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Chloroplasts are descended from a cyanobacterial endosym-
biont and divide by binary fission. Reminiscent of the process 
in their bacterial ancestor, chloroplast division involves a part of 
cyanobacteria-derived division machineries in addition to those 
acquired during chloroplast evolution.1,2 In both bacterial and 
chloroplast division, formation of the FtsZ ring at the mid posi-
tion is required for subsequent constriction and fission at the mid 
division site.1-4 As in bacteria, positioning of the FtsZ ring at 
the mid-chloroplast is mediated by the Min system.1,2 Recently, 
we identified the MCD1 protein, a plant-specific component 
of the Min system in Arabidopsis thaliana chloroplasts.5 Unlike 
other division components that have been acquired after endo-
symbiosis and function outside of the chloroplasts (i.e., in/on 
the outer envelope membrane),6-9 MCD1 functions inside the 
chloroplast. Since we already discussed about the function and 
significance of MCD1 as a division component of plant origin,5 
here we focus on and discuss about the diversity and evolution 
of the Min system.

Components of the Min System in Escherichia coli and 
Bacillus subtilis

Bacterial cells usually divided binary division by constriction at 
the mid-cell position. The formation of a ring structure by polym-
erization of the tubulin-like protein FtsZ is the first known event 
at the division site, and it initiates the recruitment of the other 
proteins that comprise the bacterial division complex. The place-
ment of the FtsZ ring at the mid-cell position is partly mediated by 
the Min system, which prevents FtsZ ring formation other than at 

the mid-cell position.3,4 A large number of genome projects have 
revealed both partial conservation and also certain differences in 
the composition of the Min system in diverse bacterial lineages.3

The Min system has been studied extensively in both the 
proteobacterium (Gram-negative) Escherichia coli and firmicute 
(Gram-positive) Bacillus subtilis.3,4 In both organisms, MinC 
inhibits FtsZ ring formation, and MinD is a membrane-associated 
protein which recruits MinC to the membrane.10-13 The MinCD 
complex inhibits division other than at the mid-cell position, while 
allowing division at the mid-cell position.

Despite the conservative function of the MinCD complex, the 
topological specificity of the MinCD is regulated differently in  
E. coli and B. subtilis. In E. coli MinE sweeps the MinCD complex 
from one pole to the other so that MinCD undergoes subsequent 
pole-to-pole oscillation (Fig. 1). The time-averaged concentration of 
MinCD is maintained at a high level near the cell poles, and at a low 
level mid-cell. As a result, division is prevented at the cell poles and is 
only allowed at sites mid-cell.14,15 On the other hand, in B. subtilis, 
which does not have MinE, DivIVA recruits MinCD at the cell poles 
so that the FtsZ ring forms mid-cell. In B. subtilis, MinCD also 
localizes at the division site after FtsZ ring formation (Fig. 1),16-18 
but the significance of the division-site localization is still unclear.

Components of the Min System in Cyanobacteria and 
Chloroplasts

Chloroplasts evolved from a cyanobacterial ancestor that was 
engulfed and enslaved by a eukaryotic host cell. Reminiscent of 
their bacterial ancestor, chloroplasts divide by binary division. 
Studies have shown that the chloroplast division involves FtsZ, 
MinD and MinE, genes which have been transferred from the 
engulfed cyanobacterium to the plant nuclear genome.1,2 Although 
the exact action of the Min system in cyanobacteria and chloro-
plasts has not been clarified, database searches and analyses of gene 
disruptants revealed that MinC, MinD, MinE and DivIVA-like 
protein are involved in cyanobacterial cell division (Fig. 1).19,20 
Therefore, unlike the case in B. subtilis and E. coli, both MinE and 
DivIVA participate in cyanobacterial cell division.

Of the MinC, MinD, MinE and DivIVA-like proteins which 
are conserved in cyanobacteria, cyanobacteria-descended MinD 
and MinE are found in the genomes of green algae and land plants 
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(Fig. 1).1,2 In addition, both have been shown to 
regulate the positioning of the FtsZ ring in the 
chloroplasts of A. thaliana21,22 and Chlamydomonas 
reinhardtii.23 Putative MinC is evident in green algae 
(e.g., gi:145340725) and the moss Physcomitrella patens 
(gi:168012958) (Fig. 1),2 although the function has yet 
to be characterized. These sequences are most closely 
related to those of cyanobacterial MinC, but missing 
in other land plant genomes, suggesting that MinC 
has been lost during the course of land plant evolution 
(Fig. 1). On the other hand, no DivIVA homolog has 
been found in the available plant and algal genome 
data, suggesting that DivIVA had been lost at an earlier 
stage of chloroplast evolution (Fig. 1).

Chloroplast-Specific Components of the  
Min System

In addition to MinD and MinE, studies on the 
A. thaliana chloroplast division mutants, arc3,24,25 
and mcd1,5 have identified additional proteins that 
regulate FtsZ ring positioning in concert with MinD 
and MinE. The ARC3 protein is composed of an 
incomplete FtsZ-like domain, a middle domain with 
no recognizable sequence motifs, and a domain with 
partial similarity to phosphatidylinositol-4-phos-
phate 5-kinase (PIP5K). The PIP5K-like region bears membrane 
occupation and recognition nexus (MORN) motifs, and is known 
to bind to membranes. ARC3 is reported to localize at the divi-
sion site and poles of chloroplasts (Fig. 1).24,25 Similar to the  
A. thaliana minD mutant, arc3 mutation results in asymmetric 
chloroplast division and the formation of multiple FtsZ rings 
in single chloroplasts, indicative of a defect in FtsZ ring posi-
tioning.24-26 Similarly to bacterial MinC, ARC3 directly interacts 
with MinD, MinE and FtsZ, and overexpression of ARC3 inhibits 
FtsZ ring formation. Therefore, it is suggested that ARC3 fulfills 
the role of MinC, which is absent in land plants.1,2,25

MCD1 spans the inner envelope membrane and bears a coiled-
coil motif on the stromal side. Similar to the minD and arc3 
mutants, mcd1 mutation results in asymmetric chloroplast division 
and the formation of multiple FtsZ rings in single chloroplasts.5 
MCD1 directly interact with MinD, recruiting MinD to the chlo-
roplast division site and the punctate structures dispersed on the 
inner envelope (Fig. 1).5 Like MCD1, DivIVA bears coiled-coil 
motifs and recruits MinCD, but the recruitment requires another 
component, MinJ, in B. subtilis,27,28 and there are no similarities 
between MCD1 and DivIVA in terms of amino acid sequence.

ARC3 is found in the genomes of both green algae and land 
plants, whereas MCD1 is specific to land plants, suggesting that 
ARC3 became integrated into the chloroplast Min system at a rela-
tively earlier point of chloroplast evolution than MCD1 (Fig. 1).

Future Perspectives on Evolutionary and Comparative 
Analyses of the Min System

Although the experimental data are still limited in cyanobac-
teria and chloroplasts, the differences in composition of the Min 

system among bacteria, plant and algal chloroplasts suggest the 
existence of several different mechanisms to position the FtsZ ring. 
In addition, a comparison of the genome sequences along with the 
identification and characterization of ARC3,24,25 MinD21,29 and 
MCD1,5 indicate that the chloroplast Min system has undergone 
stepwise reconstruction by the loss and acquisition of various 
components (Fig. 1).

For a better understanding the evolution of the chloroplast 
Min system, (1) information on action of the cyanobacterial Min 
system is indispensable. In A. thaliana chloroplasts, MinD local-
izes at the division site, as in B. subtilis (Fig. 1).5 Together with the 
evident involvement of DivIVA in cyanobacteria as in B. subtilis, 
this suggests that cyanobacterial MinCD localizes at the division 
site and cell poles, as do MinCD in B. subtilis. However, MinE is 
involved in cyanobacterial and chloroplast division, unlike the case 
in B. subtilis. (2) The localization of MinE in cyanobacteria and 
chloroplasts will provide critical insights into an understanding of 
the divergence of the Min system. During the course of chloroplast 
evolution, ARC3 was acquired and the MinC-like protein was lost 
(Fig. 1). It is also notable that certain bacterial and archaeal species 
have MinD, but not MinC.30 (3) Functional experiments on the 
MinC-like protein, and comparison between action of MinC and 
ARC3, will reveal how Min system works without MinC, which 
is a division inhibitor therefore an effector of the Min system 
in bacteria. As above, there are many points that remain to be 
addressed. Further studies should provide important insights into 
the commonalities and differences in the bacterial and chloroplast 
Min systems.

Diversity and evolution of the Min system

Figure 1. Composition of the Min system and localization of respective components in 
bacteria and chloroplasts. Only components of known localization are shown inside the 
cells or chloroplasts. See the text for details.
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